If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-6=0
a = 4; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·4·(-6)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*4}=\frac{0-4\sqrt{6}}{8} =-\frac{4\sqrt{6}}{8} =-\frac{\sqrt{6}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*4}=\frac{0+4\sqrt{6}}{8} =\frac{4\sqrt{6}}{8} =\frac{\sqrt{6}}{2} $
| 19=w/4+13 | | x/4+5=45 | | 3/4-x-5/4+x+6x+4/x^2-16=0 | | A=8x−10 | | 4y+6=11 | | 100=45,522*x-2,529*x^2 | | 6g^2+9g-8=0 | | ∠A=8x−10 | | -9x=-8x+11 | | 4n+24n-2=7(4n+2) | | 208,21=45,522*x+2,529*x^2 | | (2x+10)+6x=90 | | 10(x+4)^9=0 | | 10(x+4)^(9)=0 | | 12x+48=9•2x | | (2x+10)+6x=180 | | 24x+20=3x+24+3 | | $24x+20=3x+24+3$ | | 2(6x+5)=7x-30 | | 1x20x340/34x100=9 | | 7+5x=28 | | 4^(1-4x)=7^(x) | | x–x–13=21 | | G(x)=2x^2+3x-3 | | 4p-111-p=2+p-20 | | 5.2x-4.3=6.1 | | x+(x-3)+65=180 | | 2x+20+2x-24=180 | | y/5-10=50 | | 8x+6=8x42 | | 3(j+41)35=j | | (2x)+(x-5)+(x-23)=180 |